Parathyroid hormone-related protein promotes epithelial-mesenchymal transition.

نویسندگان

  • Juan Antonio Ardura
  • Sandra Rayego-Mateos
  • David Rámila
  • Marta Ruiz-Ortega
  • Pedro Esbrit
چکیده

Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-beta1 in cultured tubuloepithelial cells and TGF-beta blockade inhibited PTHrP-induced EMT-related changes, including upregulation of alpha-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-beta1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-beta1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-beta1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-beta, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells.

Epithelial-to-mesenchymal transition (EMT) has been shown to play an important role in renal fibrogenesis. Recent studies suggested parathyroid hormone (PTH) could accelerate EMT and subsequent organ fibrosis. However, the precise molecular mechanisms underlying PTH-induced EMT remain unknown. The present study was to investigate whether Wnt/β-catenin signaling pathway is involved in PTH-induce...

متن کامل

Parathyroid Hormone Related-Protein Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer

Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in can...

متن کامل

Activation of the PTHRP/adenylate cyclase pathway promotes differentiation of rat XEN cells into parietal endoderm, whereas Wnt/β-catenin signaling promotes differentiation into visceral endoderm.

During early mammalian development, primitive endoderm (PrE) is specified and segregated away from the pluripotent epiblast. At a later developmental stage, PrE forms motile parietal endoderm (PE) lying proximal to the trophectoderm, and visceral endoderm (VE) that contacts the developing epiblast and extraembryonic ectoderm. Mouse extraembryonic endoderm (XEN) cells were isolated and became wi...

متن کامل

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

Activation of the PTHRP/adenylate cyclase pathway promotes differentiation of rat XEN cells into parietal endoderm, whereas Wnt/b-catenin signaling promotes differentiation into visceral endoderm

During early mammalian development, primitive endoderm (PrE) is specified and segregated away from the pluripotent epiblast. At a later developmental stage, PrE forms motile parietal endoderm (PE) lying proximal to the trophectoderm, and visceral endoderm (VE) that contacts the developing epiblast and extraembryonic ectoderm. Mouse extraembryonic endoderm (XEN) cells were isolated and became wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2010